A Bayesian Approach to Causal Discovery
نویسندگان
چکیده
We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraint-based approach. Both approaches rely on the Causal Markov assumption, but the two di er signi cantly in theory and practice. An important di erence between the approaches is that the constraint-based approach uses categorical information about conditional-independence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraint-based counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of nite size. Two, using the Bayesian approach, ner distinctions among model structures|both quantitative and qualitative|can be made. Three, information from several models can be combined to make better inferences and to better account for modeling uncertainty. In addition to describing the general Bayesian approach to causal discovery, we review approximationmethods for missing data and hidden variables, and illustrate di erences between the Bayesian and constraint-based methods using arti cial and real examples.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملBayesian Probabilities for Constraint-Based Causal Discovery
We target the problem of accuracy and robustness in causal inference from finite data sets. Our aim is to combine the inherent robustness of the Bayesian approach with the theoretical strength and clarity of constraint-based methods. We use a Bayesian score to obtain probability estimates on the input statements used in a constraint-based procedure. These are subsequently processed in decreasin...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملCausal Discovery with Prior Information
Bayesian networks (BNs) are rapidly becoming a leading tool in applied Artificial Intelligence (AI). BNs may be built by eliciting expert knowledge or learned via causal discovery programs. A hybrid approach is to incorporate prior information elicited from experts into the causal discovery process. We present several ways of using expert information as prior probabilities in the CaMML causal d...
متن کاملCausal Discovery from Databases with Discrete and Continuous Variables
Bayesian Constraint-based Causal Discovery (BCCD) is a state-of-the-art method for robust causal discovery in the presence of latent variables. It combines probabilistic estimation of Bayesian networks over subsets of variables with a causal logic to infer causal statements. Currently BCCD is limited to discrete or Gaussian variables. Most of the real-world data, however, contain a mixture of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997